Constante d’acidité de l’acide éthanoïque
exploitation python des résultats d’un groupe
première méthode
import math import numpy as np import matplotlib.pyplot as plt from scipy import stats import math VA=[5,10,20,25,30,40,45] VB=[] for i in range(len(VA)): VB.append(50-VA[i]) pH=[5.7,5.2,4.9,4.8,4.3,3.83,3.75] x=[] for i in range(len(VA)): x.append(math.log10((VB[i])/VA[i])) pH=np.array(pH) x=np.array(x) slope, intercept, r_value, p_value, std_error = stats.linregress(x,pH) pHmodel=slope*x+intercept plt . scatter(x ,pH,s=100,color ='yellow') plt . plot (x ,pHmodel,marker=".",color ='blue',markersize=1) plt . ylabel ("pH") plt . xlabel ("log(VB/VA)") plt.axis([-1, 1, 0, 14]) plt . grid () plt .show() print("a=",slope) print("b=",intercept) print("cofficient de correlmation=",r_value)

deuxième méthode
import numpy as np import matplotlib.pyplot as plt from scipy import stats VA=np.array([5,10,20,25,30,40,45]) VB=50-VA pH=np.array([5.7,5.2,4.9,4.8,4.3,3.83,3.75]) x=np.log10(VB/VA) slope, intercept, r_value, p_value, std_error = stats.linregress(x,pH) pHmodel=slope*x+intercept plt . scatter(x ,pH,s=100,color ='yellow') plt . plot (x ,pHmodel,marker=".",color ='blue',markersize=1) plt . ylabel ("pH") plt . xlabel ("log(VB/VA)") plt.axis([-1, 1, 0, 14]) plt . grid () plt .show() print("a=",slope) print("b=",intercept) print("cofficient de correlmation=",r_value)
