Probleme de chimie

Un projet de parc éolien en mer, celui des iles d’Yeu et de Noirmoutier, prévoit I'installation de
soixante-deux éoliennes.

La méthode de protection contre la corrosion des structures immergées de ces éoliennes a été
débattue. La « protection cathodique » envisagée initialement consistait a placer des anodes dites
« sacrificielles », composées essentiellement d’aluminium, sur les fondations en acier (95 % de fer)
des éoliennes. En effet, la réaction des anodes sacrificielles avec le dioxygeéne dissous dans I'eau
permet par transformation électrochimique de protéger le fer de la corrosion.

Finalement, aprés concertation, le constructeur du parc lui a préféré un systéme de protection dit
« par courant imposé » qui permet d’éviter le rejet de métaux dans I'environnement.
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fondation en acier

Dans cet exercice, on s’intéresse seulement au processus de protection cathodique.



A. Protection du fer par ’aluminium

On souhaite vérifier qu’en milieu oxydant on peut protéger le fer de 'oxydation en le mettant en
contact électrique avec de I'aluminium qui joue alors le role d’anode sacrificielle. Par oxydation, le
fer métallique donne des ions fer Il (Fe?*) et I'aluminium métallique donne des ions A{*.

On réalise la pile suivante :
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Dans un bécher, on verse un volume V1 = 50,0 mL de solution aqueuse de chlorure de fer Il

(Fe2+(aq) + 2 C[‘(aq)) de concentration apportée en quantité de matiére C1 = 1,0 x 10-' mol-L,
puis on y plonge une plaque de fer.

Dans un second bécher, on verse un volume V2 = 50,0 mL de solution aqueuse de sulfate d’aluminium

(2 Af*(aq) + 3 SO42'(aq)) de concentration apportée en quantité de matiére C2 = 5,0 x 102 mol-L,
puis on y plonge une plaque d’aluminium.

Les deux béchers sont reliés par un pont salin et les deux plaques métalliques sont reliées par
un ampéeremetre et une résistance montés en série.

L’équation de la réaction qui modélise la transformation susceptible de se produire s’écrit :
2 Al(s) + 3 Fe?*(aq) 2 2 Af®*(aq) + 3 Fe(s)
La constante d’équilibre K associée a cette réaction a 25°C est égale a 1066,
A.1. Exprimer le quotient de réaction initial Qy,.

A.2. Calculer, a I'état initial, la valeur de la concentration en quantité de matiére des ions
Af**(aq) et celle des ions Fe?*(aq).

A.3. Calculer la valeur du quotient de réaction initial Qr; puis en déduire le sens d’évolution
spontanée de la transformation.



A.4. En déduire la réaction se produisant a I'électrode d’aluminium.

L’ampéremetre figurant sur le schéma indique une valeur d’intensité électrique négative.

A.5. Montrer que cette valeur négative est cohérente avec la réponse a la question précédente.

L’anode est I'électrode siége d’'une oxydation. La cathode est I'électrode siége d’'une réduction.

A.6. |dentifier I'électrode qui joue le réle d’anode de la pile.

B. Masse d’aluminium nécessaire a la protection de la structure métallique d’une éolienne

Le dioxygéne dissous dans I'eau réagit préférentiellement avec I'aluminium de 'anode sacrificielle
plutdt qu’avec le fer de la structure immergée de I'éolienne.

On souhaite évaluer la masse d’aluminium nécessaire a la protection de la structure d’'une
éolienne, c’est-a-dire a la protection cathodique.
Données :

e Couples oxydant/réducteur mis en jeu : Af*(aq)/ Al(s) ; Oz(aq) / HO (aq)

¢ Demi-équation du couple O2(aq)/ HO(aq) :

O2(aq) +2H20+4 e =4 HO (aq)

e Constante de Faraday F = 96,5 x 103 C-mol"

e Constante d’Avogadro Na = 6,02 x 102 mol’

e Charge élémentaire e = 1,602 x 107° C

e Masse molaire de I'aluminium Mat = 27,0 g-mol’

e La capacité électrique Q d’une pile est reliée a l'intensité / du courant électrique débité et a
la durée de fonctionnement At par la relation : Q = /At

B.1. Ecrire 'équation de la réaction modélisant la transformation chimique de corrosion de
I'aluminium par le dioxygene dissous.

L’étude théorique des transferts d’électrons entre I'anode en aluminium et la structure d'une
éolienne montre qu’une protection efficace correspond a un courant électrique d’intensité / de
I'ordre de 400 A.

B.2. En explicitant le raisonnement, calculer la masse d’aluminium nécessaire a la « protection
cathodique » pendant une durée de 25 ans.

B.3. Citer au moins un argument expliquant que le constructeur ait finalement renoncé a la
protection par anode sacrificielle.



Probléme de physique

Le basket-ball est le deuxiéme sport collectif pratiqué en
France, et le premier dans les catégories féminines (source
. SIMM-Consojunior 2011). Il figure parmi les sports
olympiques lors des Jeux Olympiques de Paris 2024.

Dans cet exercice on étudie trois aspects fondamentaux de
ce sport : 'optimisation de la trajectoire d’un tir, le rebond
du ballon lors des dribbles ainsi que la problématique des
risques auditifs liés aux coups de sifflet des arbitres.
Wikimedia commons
Données :

> masse du ballon : m=600g;

> rayon du ballon: R =12 cm

» valeur du champ de pesanteur supposé uniforme : g = 9,8 m-s;

> rayon de I'arceau du panier : Ra =22,5cm ;

> hauteur de I'arceau du panier, par rapport au sol : Ha = 3,05 m.

1. Etude d’une trajectoire idéale

Il est Iégitime pour un joueur de basket-ball de se demander comment obtenir la trajectoire la plus
efficace pour marquer un panier. Un site internet spécialisé dans le basket-ball donne le conseil
suivant :
« privilégier un angle de tir entre 47° et 55° par rapport a I'horizontale. On préconise les tirs en
cloche de fagon a avoir une exploitation maximale de la surface du panier »
(source : BasketSession.com)

Yo _, Arceau du panier »

Ha
Hm

Figure 1. Schéma du lancer-franc considéré juste aprés que le ballon a quitté la main.

Premiére modélisation

Dans un premier temps, on s’intéresse au mouvement du centre de masse M d’un ballon
lorsqu’un joueur réalise un lancer-franc. On réalise I'étude dans le référentiel terrestre supposé
galiléen et on considére qu’une fois lancé, le ballon n’est soumis qu’a son propre poids. On
néglige donc toute force de frottement de I'air sur le ballon.

Quand le ballon quitte la main du joueur, son centre de masse M est situé a une hauteur Hm =
2,30 m par rapport au sol et a une distance horizontale L = 4,6 m du centre C de I'arceau du
panier (figure 1).

On étudie le mouvement dans le repére cartésien indiqué sur la figure 1 : le plan (Oxy) est un
plan vertical contenant la main du basketteur au moment ou il lache le ballon et le centre C de
I'arceau.



L’instant initial est I'instant ou le ballon quitte la main, avec un vecteur vitesse initial Yo qui forme
un angle a avec I'axe horizontal. L’'angle a est supposé différent de 90°.

Q1. Montrer que dans le plan (Oxy), les coordonnées du vecteur accélération a(t) du centre de
masse M du ballon peuvent s’écrire :
L. fat)=0
a(t ( X )
Nay0=-g
Q2. Exprimer les coordonnées du vecteur vitesse V(f) du point M a chaque instant, notées :
S o (Vx(©
v(t < X )
(1) v,

Q3. Exprimer les coordonnées du vecteur position W(t) au cours du temps, notées :
Siicn (X©
OM(t ( )
0 y(®
Q4. Montrer que I'équation de la trajectoire du centre de masse M du ballon peut s’écrire :
g 2
X)=- ————.x* + x.tan(a) +H,
yeo 2.v3.cos? (a) (@ +Hpn
Un tir est considéré comme parfait lorsque le centre de masse M du ballon passe par le centre C
de 'arceau du panier, le ballon ne touchant pas le bord de I'arceau.
Q5. Montrer que pour un angle initial a et pour une distance L donnés, il existe une vitesse initiale

voc pour laquelle la trajectoire du centre de masse du ballon passe par le centre du panier, dont
I'expression est :

g.L2
2.cos?(a).(L.tan(a) +H,,-H,)

Voc =

Q6. Lors d'un lancer-franc, on montre (démonstration non demandée) qu’un tir avec un angle
initial de 49,5° permet d’obtenir la vitesse initiale voc la plus faible possible. Calculer cette vitesse.

On souhaite comparer cette vitesse a celle qu’un joueur situé a une distance L = 2 m du panier
doit communiquer au ballon. On trace sur les figures 2-a et 2-b la vitesse initiale a donner au

ballon pour qu’il passe par le centre C de I'arceau du panier en fonction de I'angle initial a, pour
la distance L =2 m.
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Figure 2-a. Vitesse initiale & donner au ballon & une " Figure 2-b. Agrandissement de la zone
distance L = 2 m pour qu'il atteigne le centre C de entourée de la figure 2-a

l'arceau en fonction de I'angle initial

Déterminer graphiquement I'angle initial a choisir pour communiquer au ballon la vitesse initiale
minimale lui permettant de passer par le centre C de I'arceau, si le joueur est placé a la distance
L =2 m. Comparer les valeurs de I'angle et de la vitesse ainsi trouvées a celles obtenues pour
un lancer-franc. Commenter.



Q8. On distingue sur la figure 2-a deux asymptotes verticales. Expliquer pourquoi lorsque I'angle
de tir initial se rapproche de 90°, la courbe de la vitesse en fonction de I'angle initial tend vers
une asymptote.

Deuxiéme modélisation

Jusqu’a présent, la vitesse a communiquer au ballon a été déterminée a partir d’'une seule
condition : le centre de masse M du ballon doit passer par le centre C de I'arceau. Il apparait
nécessaire de prendre en compte deux conditions supplémentaires :
> condition 1 : un ballon qui ne passe pas par le dessus du panier n’est pas valide ;
> condition 2 : un ballon qui rebondit sur le bord du panier avant d’en atteindre le centre ne
donne pas un tir parfait.

On souhaite s’appuyer sur un programme rédigé en langage Python pour déterminer les
trajectoires qui vérifient ces deux conditions.

La figure 3 présente un extrait du code qui permet de vérifier que le ballon rentre bien dans
I'arceau, dans le bon sens et sans le toucher. Le début du code (non représenté avant la ligne
80) permet de calculer la trajectoire passant par le centre C de I'arceau pour un angle initial
donné, selon I'étude réalisée en premiere partie. Pour une trajectoire donnée, les coordonnées
du centre de masse du ballon sont stockées dans les tableaux (aussi appelés listes) x et y. Les
valeurs de x sont comprises entre O et L.

B0 #EHHHHEHE R EEREE Veriflcations #ada##fTaatatstes

81# Le ballon passe-t-il au dessus ?
T —

83 print("Le ballon ne passe pas au dessus de l'arceau !")

84

85 #Le ballon touche-t-il 1'arceau avant de rentrer ?

86 def d_bord(x,y):

87 return np.sqrt((L-Ra-x)**2+(Ha-y)**2) #Distance entre le centre du ballon et le bord de 1'arceau
88

89 test=False

98 for 1 in range(Nx): #Nx est le nombre de points dans la trajectoire
91 if d_bord(x[1],y[1])<Rb: #Rb rayon du ballon

92 test=True

93 if test:

94 print("Le ballon touche 1'arceau")

95 else:

96 print("Le ballon ne touche pas l'arceau")

Figure 3. Partie du code qui permet de vérifier que le ballon passe bien dans I'arceau dans le bon
sens et sans le toucher

Q9. Parmi les propositions ci-dessous, choisir et recopier sur la copie le code qu’il convient
d’écrire pour compléter la ligne 82, afin qu’elle permette de vérifier la condition « le ballon ne
passe pas au-dessus de l'arceau ». Les variables du programme, notées Ha et L, représentent
respectivement les paramétres Ha et L.

max(x) > L max(y) < Ha min(y) > L max(x) < Ha

Les fonctions max(x)et min(x)renvoient respectivement la plus grande et la plus petite valeur du
tableau x.
Q10. Justifier que les lignes 89 a 92 permettent de tester la condition 2.

Q11. L’application des deux nouvelles conditions permet de déterminer que I'angle initial minimal
pour réaliser un tir parfait au lancer-franc est voisin de 45°. Commenter cette valeur au regard
des conseils fournis par le site internet cité en début d’exercice.



2. Etude du dribble et du rebond du ballon

Au basket-ball, il est interdit de se déplacer en portant la balle sur plus de trois pas. Il faut donc
la faire rebondir sur le sol (C’est le dribble). Il est donc important d’étudier les caractéristiques de
ce rebond.

A cette fin, on réalise le protocole suivant :
> un ballon est laché, sans vitesse initiale, d’'une hauteur voisine d’'un metre ;
> il tombe, rebondit sur le sol dur et remonte ;
> le pointage du centre de masse M du ballon est réalisé a I'aide d’'une chronophotographie.
Ces données permettent d’obtenir les représentations graphiques de I'évolution des
énergies cinétique, potentielle de pesanteur et mécanique du ballon au cours du temps
(figure 4).
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Figure 4. Evolution des énergies au cours du temps

Q12. Parmi les courbes 1, 2 et 3 de la figure 4, identifier celles qui représentent I'évolution de
I'énergie cinétique, de I'énergie potentielle de pesanteur et de I'énergie mécanique. Justifier
chacune de ces identifications.

Q13. Montrer que I'énergie perdue par le ballon lors du rebond est voisine de 2,5 J.

Q14. Indiquer, en justifiant, s'il est raisonnable dans cette étude de négliger les frottements en
dehors du moment ou le ballon rebondit.

Q15. Lorsqu’on dribble, on ne lache pas le ballon mais on le pousse vers le bas assez fort pour
gu’il remonte suffisamment haut pour continuer a dribbler. Déterminer la vitesse initiale minimale
a communiquer a un ballon lancé d’'une hauteur d’'un metre pour qu’il remonte au moins a cette
méme hauteur.

On admet que la perte énergétique lors du rebond est la méme qu’a la question Q13.

3. Entendre ’arbitre lors d’un match



Le basket-ball est un sport dans lequel le public peut se manifester bruyamment a n’importe quel
moment. Pour autant, I'arbitre, qui signale les fautes grace a un sifflet, doit pouvoir étre entendu
par tous les joueurs.
On admet que I'on peut distinguer un son trés bref et aigu du bruit ambiant si son niveau sonore
est supérieur d’au moins 3 dB a celui du bruit ambiant.
On rappelle que :

> le niveau d’intensité sonore noté Lson s’exprime en dB et est lié a I'intensité sonore / au

point considéré par :

I
L..,=10.log (E>

ol lo =1 x 1072 W-m™ est conventionnellement la plus faible intensité sonore détectable par
I'oreille humaine et ou log désigne le logarithme décimal ;
> si une source sonore ponctuelle de puissance sonore P est placée dans un milieu sans
obstacle et non absorbant, alors l'intensité sonore a une distance d de la source s’exprime
par :
P

4.17.d°

> les sons trop forts constituent un danger pour l'appareil auditif. Lorsque le niveau
d’intensité sonore est trop important, il faut porter des protections auditives, comme des
bouchons d’oreilles. La figure 5 donne quelques ordres de grandeur de niveaux d’intensité
sonore et indique, notamment, le seuil de danger au- dela duquel le son peut entrainer
des lésions dans l'oreille.
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Figure 5. Echelle des niveaux d’intensité sonore percus par l'oreille (source mur-silenzo.com)

Q16. On suppose que l'arbitre siffle au moment ou est commise une faute. A cet instant, il est &
une distance d1 = 20 m du joueur le plus éloigné sur le terrain et a une distance d2 = 1,0 m d'un
joueur remplacant assis sur un banc au bord du terrain. A I'aide d’un calcul, déterminer si le joueur
remplagant doit porter des protections auditives, sachant que le bruit ambiant est de I'ordre de 80
dB.

Le candidat est invité a prendre des initiatives et a présenter la démarche suivie, méme si elle
n’a pas abouti. La démarche est évaluée et doit étre correctement présentee.



