
Problème de chimie 
 
Un projet de parc éolien en mer, celui des îles d’Yeu et de Noirmoutier, prévoit l’installation de 
soixante-deux éoliennes. 
La méthode de protection contre la corrosion des structures immergées de ces éoliennes a été 
débattue. La « protection cathodique » envisagée initialement consistait à placer des anodes dites 
« sacrificielles », composées essentiellement d’aluminium, sur les fondations en acier (95 % de fer) 
des éoliennes. En effet, la réaction des anodes sacrificielles avec le dioxygène dissous dans l’eau 
permet par transformation électrochimique de protéger le fer de la corrosion. 
Finalement, après concertation, le constructeur du parc lui a préféré un système de protection dit 
« par courant imposé » qui permet d’éviter le rejet de métaux dans l’environnement. 
 

 
 
Dans cet exercice, on s’intéresse seulement au processus de protection cathodique. 
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A. Protection du fer par l’aluminium 
On souhaite vérifier qu’en milieu oxydant on peut protéger le fer de l’oxydation en le mettant en 
contact électrique avec de l’aluminium qui joue alors le rôle d’anode sacrificielle. Par oxydation, le 
fer métallique donne des ions fer II (Fe2+) et l’aluminium métallique donne des ions Aℓ3+. 
 
On réalise la pile suivante : 
 

 
 
Dans un bécher, on verse un volume V1 = 50,0 mL de solution aqueuse de chlorure de fer II 
(Fe2+(aq) + 2 Cℓ-(aq)) de concentration apportée en quantité de matière C1 = 1,0 × 10-1 mol·L-1, 
puis on y plonge une plaque de fer. 
 
Dans un second bécher, on verse un volume V2 = 50,0 mL de solution aqueuse de sulfate d’aluminium 
(2 Aℓ3+(aq) + 3 SO42-(aq)) de concentration apportée en quantité de matière C2 = 5,0 × 10-2 mol·L-1, 
puis on y plonge une plaque d’aluminium. 
 
Les deux béchers sont reliés par un pont salin et les deux plaques métalliques sont reliées par 
un ampèremètre et une résistance montés en série. 
 
L’équation de la réaction qui modélise la transformation susceptible de se produire s’écrit : 
 

2 Aℓ(s) + 3 Fe2+(aq) ⇄ 2 Aℓ3+(aq) + 3 Fe(s) 
 
La constante d’équilibre K associée à cette réaction à 25°C est égale à 10166. 
 

A.1. Exprimer le quotient de réaction initial Qr,i. 
 

A.2. Calculer, à l’état initial, la valeur de la concentration en quantité de matière des ions 
Aℓ3+(aq)  et celle des ions Fe2+(aq). 

 
A.3. Calculer la valeur du quotient de réaction initial Qr,i puis en déduire le sens d’évolution 

spontanée de la transformation. 
 
  



A.4. En déduire la réaction se produisant à l’électrode d’aluminium. 
 
 
L’ampèremètre figurant sur le schéma indique une valeur d’intensité électrique négative. 
 

A.5. Montrer que cette valeur négative est cohérente avec la réponse à la question précédente. 
 
 
L’anode est l’électrode siège d’une oxydation. La cathode est l’électrode siège d’une réduction. 
 

A.6. Identifier l’électrode qui joue le rôle d’anode de la pile. 
 
 
B. Masse d’aluminium nécessaire à la protection de la structure métallique d’une éolienne 
Le dioxygène dissous dans l’eau réagit préférentiellement avec l’aluminium de l’anode sacrificielle 
plutôt qu’avec le fer de la structure immergée de l’éolienne. 
 
On souhaite évaluer la masse d’aluminium nécessaire à la protection de la structure d’une 
éolienne, c’est-à-dire à la protection cathodique. 
 
Données : 

• Couples oxydant/réducteur mis en jeu :  Aℓ3+(aq) / Aℓ(s) ; O2(aq) / HO‒(aq)  

• Demi-équation du couple O2(aq) / HO‒(aq) : 
O2(aq) + 2 H2O + 4 e‒ = 4 HO‒(aq) 

• Constante de Faraday F = 96,5 × 103 C·mol-1  

• Constante d’Avogadro NA = 6,02 × 1023 mol-1  

• Charge élémentaire e = 1,602 × 10‒19 C  

• Masse molaire de l’aluminium MAℓ = 27,0 g·mol-1  

• La capacité électrique Q d’une pile est reliée à l’intensité I du courant électrique débité et à 
la durée de fonctionnement ∆t par la relation : Q = I·∆t 

 
 

B.1. Ecrire l’équation de la réaction modélisant la transformation chimique de corrosion de 
l’aluminium par le dioxygène dissous. 

 
L’étude théorique des transferts d’électrons entre l’anode en aluminium et la structure d’une 
éolienne montre qu’une protection efficace correspond à un courant électrique d’intensité I de 
l’ordre de 400 A. 
 

B.2. En explicitant le raisonnement, calculer la masse d’aluminium nécessaire à la « protection 
cathodique » pendant une durée de 25 ans. 

 
B.3. Citer au moins un argument expliquant que le constructeur ait finalement renoncé à la 

protection par anode sacrificielle. 
  



Problème de physique 
 
 
Le basket-ball est le deuxième sport collectif pratiqué en 
France, et le premier dans les catégories féminines (source 
: SIMM-Consojunior 2011). Il figure parmi les sports 
olympiques lors des Jeux Olympiques de Paris 2024. 
 
Dans cet exercice on étudie trois aspects fondamentaux de 
ce sport : l’optimisation de la trajectoire d’un tir, le rebond 
du ballon lors des dribbles ainsi que la problématique des 
risques auditifs liés aux coups de sifflet des arbitres. 
Wikimedia commons 
Données : 

 masse du ballon : m = 600 g ; 
 rayon du ballon : Rb = 12 cm ; 
 valeur du champ de pesanteur supposé uniforme : g = 9,8 m·s-2; 
 rayon de l’arceau du panier : Ra = 22,5 cm ; 
 hauteur de l’arceau du panier, par rapport au sol : Ha = 3,05 m. 

1. Étude d’une trajectoire idéale 
Il est légitime pour un joueur de basket-ball de se demander comment obtenir la trajectoire la plus 
efficace pour marquer un panier. Un site internet spécialisé dans le basket-ball donne le conseil 
suivant : 
« privilégier un angle de tir entre 47° et 55° par rapport à l’horizontale. On préconise les tirs en  
cloche de façon à avoir une exploitation maximale de la surface du panier » 
(source : BasketSession.com) 

 
Figure 1. Schéma du lancer-franc considéré juste après que le ballon a quitté la main. 
Première modélisation 
Dans un premier temps, on s’intéresse au mouvement du centre de masse M d’un ballon 
lorsqu’un joueur réalise un lancer-franc. On réalise l’étude dans le référentiel terrestre supposé 
galiléen et on considère qu’une fois lancé, le ballon n’est soumis qu’à son propre poids. On 
néglige donc toute force de frottement de l’air sur le ballon. 
 
Quand le ballon quitte la main du joueur, son centre de masse M est situé à une hauteur Hm = 
2,30 m par rapport au sol et à une distance horizontale L = 4,6 m du centre C de l’arceau du  
panier (figure 1). 
On étudie le mouvement dans le repère cartésien indiqué sur la figure 1 : le plan (Oxy) est un 
plan vertical contenant la main du basketteur au moment où il lâche le ballon et le centre C de 
l’arceau. 
  



L’instant initial est l’instant où le ballon quitte la main, avec un vecteur vitesse initial 0v


 qui forme 
un angle α avec l’axe horizontal. L’angle α est supposé différent de 90°. 
 
Q1. Montrer que dans le plan (Oxy), les coordonnées du vecteur accélération a�⃗ (t) du centre de 
masse M du ballon peuvent s’écrire : 

a�⃗ (t) �
ax(t ) = 0
ay(t) = - g� 

Q2. Exprimer les coordonnées du vecteur vitesse  v�⃗ (t) du point M à chaque instant, notées : 

v�⃗ (t) �
vx(t)
vy(t)� 

Q3. Exprimer les coordonnées du vecteur position OM�������⃗ (t) au cours du temps, notées : 

OM�������⃗ (t) �x
(t)

y(t)� 

Q4. Montrer que l’équation de la trajectoire du centre de masse M du ballon peut s’écrire : 
y(x) = - 

g
2.v0

2.cos2(α)
.x2 + x. tan(α) +Hm 

Un tir est considéré comme parfait lorsque le centre de masse M du ballon passe par le centre C 
de l’arceau du panier, le ballon ne touchant pas le bord de l’arceau. 
Q5. Montrer que pour un angle initial α et pour une distance L donnés, il existe une vitesse initiale 
v0c pour laquelle la trajectoire du centre de masse du ballon passe par le centre du panier, dont 
l’expression est : 

v0c = �
g.L2

2.cos2(α).(L. tan(α)  + Hm - Ha)
 

 
Q6. Lors d’un lancer-franc, on montre (démonstration non demandée) qu’un tir avec un angle 
initial de 49,5° permet d’obtenir la vitesse initiale v0c la plus faible possible. Calculer cette vitesse. 
 
On souhaite comparer cette vitesse à celle qu’un joueur situé à une distance L = 2 m du panier 
doit communiquer au ballon. On trace sur les figures 2-a et 2-b la vitesse initiale à donner au 
ballon pour qu’il passe par le centre C de l’arceau du panier en fonction de l’angle initial α, pour 
la distance L = 2 m. 

Q7. 

Déterminer graphiquement l’angle initial à choisir pour communiquer au ballon la vitesse initiale 
minimale lui permettant de passer par le centre C de l’arceau, si le joueur est placé à la distance 
L = 2 m. Comparer les valeurs de l’angle et de la vitesse ainsi trouvées à celles obtenues pour 
un lancer-franc. Commenter. 
  



Q8. On distingue sur la figure 2-a deux asymptotes verticales. Expliquer pourquoi lorsque l’angle 
de tir initial se rapproche de 90°, la courbe de la vitesse en fonction de l’angle initial tend vers 
une asymptote. 
 
Deuxième modélisation 
 
Jusqu’à présent, la vitesse à communiquer au ballon a été déterminée à partir d’une seule 
condition : le centre de masse M du ballon doit passer par le centre C de l’arceau. Il apparaît 
nécessaire de prendre en compte deux conditions supplémentaires : 

 condition 1 : un ballon qui ne passe pas par le dessus du panier n’est pas valide ; 
 condition 2 : un ballon qui rebondit sur le bord du panier avant d’en atteindre le centre ne 

donne pas un tir parfait. 
 
On souhaite s’appuyer sur un programme rédigé en langage Python pour déterminer les 
trajectoires qui vérifient ces deux conditions. 
 
La figure 3 présente un extrait du code qui permet de vérifier que le ballon rentre bien dans 
l’arceau, dans le  bon sens et sans le toucher. Le début du code (non représenté avant la ligne 
80) permet de calculer la trajectoire passant par le centre C de l’arceau pour un angle initial 
donné, selon l’étude réalisée en première partie. Pour une trajectoire donnée, les coordonnées 
du centre de masse du ballon sont stockées dans les tableaux (aussi appelés listes) x et y. Les 
valeurs de x  sont comprises entre 0 et L. 

Figure 3. Partie du code qui permet de vérifier que le ballon passe bien dans l’arceau dans le bon 
sens et sans le toucher 
 
Q9. Parmi les propositions ci-dessous, choisir et recopier sur la copie le code qu’il convient 
d’écrire pour compléter la ligne 82, afin qu’elle permette de vérifier la condition « le ballon ne 
passe pas au-dessus de l’arceau ». Les variables du programme, notées Ha et L, représentent 
respectivement les paramètres Ha et L. 
 
max(x) > L max(y) < Ha min(y) > L max(x) < Ha 

 
Les fonctions max(x)et min(x)renvoient respectivement la plus grande et la plus petite valeur du 
tableau x. 
Q10. Justifier que les lignes 89 à 92 permettent de tester la condition 2. 
 
Q11. L’application des deux nouvelles conditions permet de déterminer que l’angle initial minimal 
pour réaliser un tir parfait au lancer-franc est voisin de 45°. Commenter cette valeur au regard 
des conseils fournis par le site internet cité en début d’exercice. 
  



2. Étude du dribble et du rebond du ballon 
 
Au basket-ball, il est interdit de se déplacer en portant la balle sur plus de trois pas. Il faut donc 
la faire rebondir sur le sol (c’est le dribble). Il est donc important d’étudier les caractéristiques de 
ce rebond. 
 
À cette fin, on réalise le protocole suivant : 

 un ballon est lâché, sans vitesse initiale, d’une hauteur voisine d’un mètre ; 
 il tombe, rebondit sur le sol dur et remonte ; 
 le pointage du centre de masse M du ballon est réalisé à l’aide d’une chronophotographie. 

Ces données permettent d’obtenir les représentations graphiques de l’évolution des 
énergies cinétique, potentielle de pesanteur et mécanique du ballon au cours du temps 
(figure 4). 

 

 
 
Q12. Parmi les courbes 1, 2 et 3 de la figure 4, identifier celles qui représentent l’évolution de 
l’énergie cinétique, de l’énergie potentielle de pesanteur et de l’énergie mécanique. Justifier 
chacune de ces identifications. 
 
Q13. Montrer que l’énergie perdue par le ballon lors du rebond est voisine de 2,5 J. 
 
Q14. Indiquer, en justifiant, s’il est raisonnable dans cette étude de négliger les frottements en 
dehors du moment où le ballon rebondit. 
 
Q15. Lorsqu’on dribble, on ne lâche pas le ballon mais on le pousse vers le bas assez fort pour 
qu’il remonte suffisamment haut pour continuer à dribbler. Déterminer la vitesse initiale minimale 
à communiquer à un ballon lancé d’une hauteur d’un mètre pour qu’il remonte au moins à cette 
même hauteur. 
On admet que la perte énergétique lors du rebond est la même qu’à la question Q13. 
 

3. Entendre l’arbitre lors d’un match 
 



Le basket-ball est un sport dans lequel le public peut se manifester bruyamment à n’importe quel 
moment. Pour autant, l’arbitre, qui signale les fautes grâce à un sifflet, doit pouvoir être entendu 
par tous les joueurs. 
On admet que l’on peut distinguer un son très bref et aigu du bruit ambiant si son niveau sonore 
est supérieur d’au moins 3 dB à celui du bruit ambiant. 
On rappelle que : 

 le niveau d’intensité sonore noté Lson s’exprime en dB et est lié à l’intensité sonore I au 
point considéré par : 

Lson=10.log �
I
I0
� 

où I0 = 1 × 10−12 W·m−2 est conventionnellement la plus faible intensité sonore détectable par 
l’oreille humaine et où log désigne le logarithme décimal ; 

 si une source sonore ponctuelle de puissance sonore P est placée dans un milieu sans 
obstacle et non absorbant, alors l’intensité sonore à une distance d de la source s’exprime 
par : 

I = 
P

4.π.d2 

 
 les sons trop forts constituent un danger pour l’appareil auditif. Lorsque le niveau 

d’intensité sonore est trop important, il faut porter des protections auditives, comme des 
bouchons d’oreilles. La figure 5 donne quelques ordres de grandeur de niveaux d’intensité 
sonore et indique, notamment, le seuil de danger au- delà duquel le son peut entraîner 
des lésions dans l’oreille. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Échelle des niveaux d’intensité sonore perçus par l’oreille (source mur-silenzo.com) 
 
Q16. On suppose que l’arbitre siffle au moment où est commise une faute. À cet instant, il est à 
une distance d1 = 20 m du joueur le plus éloigné sur le terrain et à une distance d2 = 1,0 m d’un 
joueur remplaçant assis sur un banc au bord du terrain. À l’aide d’un calcul, déterminer si le joueur 
remplaçant doit porter des protections auditives, sachant que le bruit ambiant est de l’ordre de 80 
dB. 
 
Le candidat est invité à prendre des initiatives et à présenter la démarche suivie, même si elle 
n’a pas abouti. La démarche est évaluée et doit être correctement présentée. 
 


